Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method

نویسندگان

  • Jon S. Larsen
  • Ilmar F. Santos
چکیده

An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate the computational performance, it is applied to the analysis of a compliant foil bearing modelled using the simple elastic foundation model. The model is derived and perturbed using complex notation. Top foil sagging effect is added to the bump foil compliance in terms of a close-form periodic function. For a foil bearing utilized in an industrial turbo compressor, the influence of boundary conditions and sagging on the pressure profile, shaft equilibrium position and dynamic coefficients is numerically simulated. The proposed scheme is faster, leading to the conclusion that it is suitable, not only for steady-state analysis, but also for non-linear time domain analysis of rotors supported by airfoil bearings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Solution of Wave Equations Near Seawalls by Finite Element Method

A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017